If it's not what You are looking for type in the equation solver your own equation and let us solve it.
72x^2=15
We move all terms to the left:
72x^2-(15)=0
a = 72; b = 0; c = -15;
Δ = b2-4ac
Δ = 02-4·72·(-15)
Δ = 4320
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{4320}=\sqrt{144*30}=\sqrt{144}*\sqrt{30}=12\sqrt{30}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-12\sqrt{30}}{2*72}=\frac{0-12\sqrt{30}}{144} =-\frac{12\sqrt{30}}{144} =-\frac{\sqrt{30}}{12} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+12\sqrt{30}}{2*72}=\frac{0+12\sqrt{30}}{144} =\frac{12\sqrt{30}}{144} =\frac{\sqrt{30}}{12} $
| 52x=2*15+2*11=30+22=52x | | 52x=2*15+2*11=30+22=52 | | 24/36=x/6 | | 2(3b-4)=1b+1 | | 12z+3+z=4+13z-1 | | 5-(3z-2)=2z+2 | | -5(2z+3)=-10z+15 | | 3*2x=-6x+4 | | 45=5xx | | 25=1x | | 9z-(2z+5)=7z-5 | | 6x-16=8x+10 | | 6z+7-2z=4z-7 | | -16t^2+320t+20=0 | | 10x-8(5/4x+3)=16 | | 4t^2-80t-5=0 | | 3x=(5x-10) | | 10x-8(1.25x+3)=16 | | 17y^2+12y=25^2 | | 2x+24=5x-30,x | | 2(2x+12)=52 | | 7w-3(2w-4)=11 | | 7w-3(2w0-4)=11 | | 4x+3–2x=15 | | 17y^2+12y=25 | | 17=c+7 | | |m+3|=12 | | 17(y^2)+12y=25 | | 0.2(x+8)-9=2 | | -4x-65=-1 | | 9(3x+9)=256 | | 5x-4=252 |